Our future cars to run on this new fuel-cell soon

A recent press release covering University of Maryland Energy Research Center director Eric Wachsman’s work with fuel cell development and concern about the direction of U.S. fuel cell policy has become the latest rage in the scientific circles as it has potential to shape the future of cars and electronic appliances like microwave and air-conditioning.

The little-known solid-oxide fuel cell (SOFC), which unlike its better known sibling, the proton exchange membrane (PEM), does not require hydrogen to generate power. The SOFC can convert any fuel into energy; for example, diesel or natural gas now, and hydrogen and biofuels in the future. This capability, Wachsman says, makes it an ideal technology to use to ease our transition from fossil fuels to renewable energy, particularly since SOFCs are approximately three times more efficient at generating power than internal combustion.

Wachsman (joint, Department of Chemical & Biomolecular Engineering and Materials Science & Engineering) states that because fuel cells, hydrogen and vehicles have been linked in both policy and in the public perception of what fuel cell technology is and can do, the U.S. is at risk of falling behind on fuel cell development and implementation as it fails to consider other options.

Wachsman’s research group has demonstrated significant advances in SOFC technology, in a recent article published in journal Science, that could make it more widely available for stationary power generation application in several years. In contrast, it may take several decades for the U.S. to develop the nationwide hydrogen fuel storage and delivery infrastructure required to make the better-known hydrogen fuel cells part of our daily lives, and to entirely phase out fossil fuel-powered vehicles.

“There is a problem in the perception of the public and policy makers, and in the funding of our fuel cell programs, that hydrogen and fuel cells are linked,” says Wachsman, a faculty member at the university’s A. James Clark School of Engineering. “Hydrogen-based fuel cells are the technology that has gotten all of the press and as a result we’re still waiting for a future hydrogen infrastructure. Yes, fuel cells can run off hydrogen, but they don’t have to.”

Another problem, Wachsman says, is America’s fixation on vehicles. “It will take decades to create a nationwide hydrogen distribution and storage system, and to convert every gas station into a hydrogen filling station. That reality has turned fuel cells into a ‘future technology’ and has resulted in a drastic reduction in the funding of fuel cell research by the DOE in favor of developing electric cars, when in fact fuel cells can be used right now in many stationary and mobile applications, including centralized power distribution and power generation for homes, businesses, and industry.”

Most people are unaware that there are two kinds of fuel cells. The one in the public eye, the proton exchange membrane (PEM) fuel cell, uses hydrogen to generate power. The type of fuel cell Wachsman and his colleagues have worked to perfect, the solid oxide fuel cell (SOFC), has a distinct advantage over its PEM-based sibling.

“Solid oxide fuel cells are unique because they can oxidize any fuel,” Wachsman explains. “They can run off of gasoline, diesel and natural gas today, and biofuels and hydrogen in the future, whenever that infrastructure is in place.”

Hot Technology

Still, nothing’s perfect, and Wachsman can sum up the reason why SOFCs aren’t in large-scale production in a word: temperature.

“That is the issue,” he explains. “It’s the reason why the automotive companies are using PEM fuel cells. PEM fuel cells operate at around 80° Celsius [180° Fahrenheit], which allows them to startup fairly quickly. Current solid oxide fuel cells currently operate at 800° Celsius [1500° Fahrenheit], so it takes a long time to warm up to operating temperature, making them more applicable to stationary power generation.”

Wachsman and his colleagues are working to change that. In the November 18 issue of Science, the team outlines the technology behind a new world record power density SOFC that generates two watts of power per square centimeter at 650° Celsius [1200° Fahrenheit]. The cell uses a bi-layer electrolyte developed by Wachsman that is more than 100 times more conductive than the conventional zirconia-based electrolyte operating at the same temperature–also a world record. When the cells are
assembled into a stack they should produce three kilowatts of electricity per kilogram of material, more than an internal combustion engine at approximately one-third the size.

The paper lays out a strategy to further lower temperature. The team believes its improvements to SOFC electrolytes and nanostructured-electrode designs could ultimately reduce the cells’ operating temperature to only 350° Celsius [660° Fahrenheit]. At that temperature they could start up fast enough for automotive applications, and would be more efficient and more affordable than current SOFCs because they could be manufactured from less expensive materials.

Progress At Risk

The DOE’s 2012 budget request, however, does not include funding for the SOFC program, effectively eliminating it from the agency’s research priorities and greatly reducing funding options for groups like Wachsman’s. This decision, he believes, was made without a complete understanding of recent significant advances in SOFC technology such as those described in the Science paper, which, combined with their fuel-flexibility, put them in an ideal position to improve nationwide energy efficiency today.

In the current issue of Energy and Environmental Science, Wachsman and his colleagues, Craig A. Marlowe and Kang Taek Lee, make the case that SOFCs should be an integral part of our energy policy. SOFCs, they argue, meet all of the DOE’s six key energy strategies: they deploy clean electricity, make use of alternative fuels, help modernize the power grid, will help gradually electrify the vehicles we drive, increase vehicle fuel efficiency, and increase building and industrial efficiency.1

“We don’t have to wait for hydrogen,” says Wachsman. “SOFCs represent a solution for everything that you can think of in terms of producing electricity and power today.”

Leave a Reply

Your email address will not be published. Required fields are marked *


This site uses Akismet to reduce spam. Learn how your comment data is processed.