LSMS / NASA

Lightweight Crane Technology Could Find a Home on the Moon

Like a Swiss Army knife, there’s not a whole lot NASA’s Lightweight Surface Manipulation System (LSMS) technology can’t do.

This lightweight robotic crane is comprised of a structurally efficient truss frame with cable actuation, and mimics the movement of a human arm, but with a much longer reach.

It is scalable to fit any sized lander, vehicle, or surface application and can use a toolbox of quick-interchange end-effectors, or tools, that allow it to act as a hoist, forklift, regolith scoop, welder, and more.

“The unique thing about the LSMS is its dexterity and multi-functionality,” said Barmac Taleghani, project manager at NASA’s Langley Research Center in Hampton, Virginia.

The LSMS was first designed, built, and tested at Langley more than a decade ago to demonstrate the concept for offloading large payloads, such as habitats and rovers, from landers on human exploration missions.

Tom Jones, principal investigator of LSMS said, ““As we establish a sustainable presence on the Moon under the Artemis missions, we will need to start setting up multiple elements, and there will be a wide range of tasks that could leverage the versatility and functionality of the LSMS.”

Upgrades to LSMS since its initial development include a suite of new tools, such as a bucket truck end-effector for digging and maneuvering regolith, a forklift tine tool for lifting cargo pallets, and a welding tool, in addition to greater autonomous functionality.

Now the team is working to design, build, and test a proto-flight, or flight-like, version that could be demonstrated on a large cargo lunar lander.

LSMS in action
Although similar in structural design to a terrestrial crane, the LSMS uses a cable-driven actuation system to articulate its arm links and precisely maneuver payloads.
Credits: NASA

 

ARTEMIS Mission to Moon

The new LSMS will be similar in size to the original prototype with about a 25-foot reach and will be able to lift payloads weighing around one metric ton on the Moon, equal to approximately 2,200 pounds, or the size of an elephant. Upcoming Artemis missions carrying science instruments, technology demonstrations, and rovers will be in that payload size range.

The LSMS hardware will be space-rated and ready for further development that could make it compatible with one or more of the landers that are selected to go to the Moon.

“We’re taking it to the level of having the proto-flight hardware built and tested under the current project,” Jones said. “A follow-on project would develop the additional mechanical and electrical interfacing and software needed to integrate it with a lander.”

Eventually the goal is to demonstrate the technology at a range of sizes that could interface with the smaller commercial robotic landers up to larger landers like the Human Landing System.

In addition to the Game Changing Development project, when NASA first announced a return to the Moon, the team started looking at creating a smaller version of the LSMS for the smaller robotic landing missions that would precede a human mission.

This mini-LSMS has about a six-foot reach and could add a similar set of capabilities for offloading and other tasks to the CLPS landers and could demonstrate the LSMS technology on the lunar surface at a smaller scale.

 

Leave a Reply

Your email address will not be published. Required fields are marked *

*

This site uses Akismet to reduce spam. Learn how your comment data is processed.